\(\int (e+f x) (a+b \arctan (c+d x))^2 \, dx\) [32]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 222 \[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=-\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {i (d e-c f) (a+b \arctan (c+d x))^2}{d^2}-\frac {(d e+f-c f) (d e-(1+c) f) (a+b \arctan (c+d x))^2}{2 d^2 f}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}+\frac {2 b (d e-c f) (a+b \arctan (c+d x)) \log \left (\frac {2}{1+i (c+d x)}\right )}{d^2}+\frac {b^2 f \log \left (1+(c+d x)^2\right )}{2 d^2}+\frac {i b^2 (d e-c f) \operatorname {PolyLog}\left (2,1-\frac {2}{1+i (c+d x)}\right )}{d^2} \]

[Out]

-a*b*f*x/d-b^2*f*(d*x+c)*arctan(d*x+c)/d^2+I*(-c*f+d*e)*(a+b*arctan(d*x+c))^2/d^2-1/2*(-c*f+d*e+f)*(d*e-(1+c)*
f)*(a+b*arctan(d*x+c))^2/d^2/f+1/2*(f*x+e)^2*(a+b*arctan(d*x+c))^2/f+2*b*(-c*f+d*e)*(a+b*arctan(d*x+c))*ln(2/(
1+I*(d*x+c)))/d^2+1/2*b^2*f*ln(1+(d*x+c)^2)/d^2+I*b^2*(-c*f+d*e)*polylog(2,1-2/(1+I*(d*x+c)))/d^2

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {5155, 4974, 4930, 266, 5104, 5004, 5040, 4964, 2449, 2352} \[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\frac {i (d e-c f) (a+b \arctan (c+d x))^2}{d^2}-\frac {(-c f+d e+f) (d e-(c+1) f) (a+b \arctan (c+d x))^2}{2 d^2 f}+\frac {2 b (d e-c f) \log \left (\frac {2}{1+i (c+d x)}\right ) (a+b \arctan (c+d x))}{d^2}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}-\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {i b^2 (d e-c f) \operatorname {PolyLog}\left (2,1-\frac {2}{i (c+d x)+1}\right )}{d^2}+\frac {b^2 f \log \left ((c+d x)^2+1\right )}{2 d^2} \]

[In]

Int[(e + f*x)*(a + b*ArcTan[c + d*x])^2,x]

[Out]

-((a*b*f*x)/d) - (b^2*f*(c + d*x)*ArcTan[c + d*x])/d^2 + (I*(d*e - c*f)*(a + b*ArcTan[c + d*x])^2)/d^2 - ((d*e
 + f - c*f)*(d*e - (1 + c)*f)*(a + b*ArcTan[c + d*x])^2)/(2*d^2*f) + ((e + f*x)^2*(a + b*ArcTan[c + d*x])^2)/(
2*f) + (2*b*(d*e - c*f)*(a + b*ArcTan[c + d*x])*Log[2/(1 + I*(c + d*x))])/d^2 + (b^2*f*Log[1 + (c + d*x)^2])/(
2*d^2) + (I*b^2*(d*e - c*f)*PolyLog[2, 1 - 2/(1 + I*(c + d*x))])/d^2

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTan[c*x^n])^p, x] - Dist[b*c
*n*p, Int[x^n*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0
] && (EqQ[n, 1] || EqQ[p, 1])

Rule 4964

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTan[c*x])^p)*(
Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTan[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 + c^2*x
^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]

Rule 4974

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a
 + b*ArcTan[c*x])^p/(e*(q + 1))), x] - Dist[b*c*(p/(e*(q + 1))), Int[ExpandIntegrand[(a + b*ArcTan[c*x])^(p -
1), (d + e*x)^(q + 1)/(1 + c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] && N
eQ[q, -1]

Rule 5004

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(p +
 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]

Rule 5040

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-I)*((a + b*ArcT
an[c*x])^(p + 1)/(b*e*(p + 1))), x] - Dist[1/(c*d), Int[(a + b*ArcTan[c*x])^p/(I - c*x), x], x] /; FreeQ[{a, b
, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]

Rule 5104

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> I
nt[ExpandIntegrand[(a + b*ArcTan[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& IGtQ[p, 0] && EqQ[e, c^2*d] && IGtQ[m, 0]

Rule 5155

Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcTan[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x]
&& IGtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \left (\frac {d e-c f}{d}+\frac {f x}{d}\right ) (a+b \arctan (x))^2 \, dx,x,c+d x\right )}{d} \\ & = \frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}-\frac {b \text {Subst}\left (\int \left (\frac {f^2 (a+b \arctan (x))}{d^2}+\frac {((d e-f-c f) (d e+f-c f)+2 f (d e-c f) x) (a+b \arctan (x))}{d^2 \left (1+x^2\right )}\right ) \, dx,x,c+d x\right )}{f} \\ & = \frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}-\frac {b \text {Subst}\left (\int \frac {((d e-f-c f) (d e+f-c f)+2 f (d e-c f) x) (a+b \arctan (x))}{1+x^2} \, dx,x,c+d x\right )}{d^2 f}-\frac {(b f) \text {Subst}(\int (a+b \arctan (x)) \, dx,x,c+d x)}{d^2} \\ & = -\frac {a b f x}{d}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}-\frac {b \text {Subst}\left (\int \left (\frac {(d e+f-c f) (d e-(1+c) f) (a+b \arctan (x))}{1+x^2}-\frac {2 f (-d e+c f) x (a+b \arctan (x))}{1+x^2}\right ) \, dx,x,c+d x\right )}{d^2 f}-\frac {\left (b^2 f\right ) \text {Subst}(\int \arctan (x) \, dx,x,c+d x)}{d^2} \\ & = -\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}+\frac {\left (b^2 f\right ) \text {Subst}\left (\int \frac {x}{1+x^2} \, dx,x,c+d x\right )}{d^2}-\frac {(2 b (d e-c f)) \text {Subst}\left (\int \frac {x (a+b \arctan (x))}{1+x^2} \, dx,x,c+d x\right )}{d^2}-\frac {(b (d e+f-c f) (d e-(1+c) f)) \text {Subst}\left (\int \frac {a+b \arctan (x)}{1+x^2} \, dx,x,c+d x\right )}{d^2 f} \\ & = -\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {i (d e-c f) (a+b \arctan (c+d x))^2}{d^2}-\frac {(d e+f-c f) (d e-(1+c) f) (a+b \arctan (c+d x))^2}{2 d^2 f}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}+\frac {b^2 f \log \left (1+(c+d x)^2\right )}{2 d^2}+\frac {(2 b (d e-c f)) \text {Subst}\left (\int \frac {a+b \arctan (x)}{i-x} \, dx,x,c+d x\right )}{d^2} \\ & = -\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {i (d e-c f) (a+b \arctan (c+d x))^2}{d^2}-\frac {(d e+f-c f) (d e-(1+c) f) (a+b \arctan (c+d x))^2}{2 d^2 f}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}+\frac {2 b (d e-c f) (a+b \arctan (c+d x)) \log \left (\frac {2}{1+i (c+d x)}\right )}{d^2}+\frac {b^2 f \log \left (1+(c+d x)^2\right )}{2 d^2}-\frac {\left (2 b^2 (d e-c f)\right ) \text {Subst}\left (\int \frac {\log \left (\frac {2}{1+i x}\right )}{1+x^2} \, dx,x,c+d x\right )}{d^2} \\ & = -\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {i (d e-c f) (a+b \arctan (c+d x))^2}{d^2}-\frac {(d e+f-c f) (d e-(1+c) f) (a+b \arctan (c+d x))^2}{2 d^2 f}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}+\frac {2 b (d e-c f) (a+b \arctan (c+d x)) \log \left (\frac {2}{1+i (c+d x)}\right )}{d^2}+\frac {b^2 f \log \left (1+(c+d x)^2\right )}{2 d^2}+\frac {\left (2 i b^2 (d e-c f)\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1+i (c+d x)}\right )}{d^2} \\ & = -\frac {a b f x}{d}-\frac {b^2 f (c+d x) \arctan (c+d x)}{d^2}+\frac {i (d e-c f) (a+b \arctan (c+d x))^2}{d^2}-\frac {(d e+f-c f) (d e-(1+c) f) (a+b \arctan (c+d x))^2}{2 d^2 f}+\frac {(e+f x)^2 (a+b \arctan (c+d x))^2}{2 f}+\frac {2 b (d e-c f) (a+b \arctan (c+d x)) \log \left (\frac {2}{1+i (c+d x)}\right )}{d^2}+\frac {b^2 f \log \left (1+(c+d x)^2\right )}{2 d^2}+\frac {i b^2 (d e-c f) \operatorname {PolyLog}\left (2,1-\frac {2}{1+i (c+d x)}\right )}{d^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.19 \[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\frac {2 a^2 c d e-2 a b c f-a^2 c^2 f+2 a^2 d^2 e x-2 a b d f x+a^2 d^2 f x^2+b^2 (-i+c+d x) (2 d e+i f-c f+d f x) \arctan (c+d x)^2-2 b \arctan (c+d x) \left (b f (c+d x)+a \left (-2 c d e+c^2 f-2 d^2 e x-f \left (1+d^2 x^2\right )\right )-2 b (d e-c f) \log \left (1+e^{2 i \arctan (c+d x)}\right )\right )+4 a b d e \log \left (\frac {1}{\sqrt {1+(c+d x)^2}}\right )-2 b^2 f \log \left (\frac {1}{\sqrt {1+(c+d x)^2}}\right )-4 a b c f \log \left (\frac {1}{\sqrt {1+(c+d x)^2}}\right )-2 i b^2 (d e-c f) \operatorname {PolyLog}\left (2,-e^{2 i \arctan (c+d x)}\right )}{2 d^2} \]

[In]

Integrate[(e + f*x)*(a + b*ArcTan[c + d*x])^2,x]

[Out]

(2*a^2*c*d*e - 2*a*b*c*f - a^2*c^2*f + 2*a^2*d^2*e*x - 2*a*b*d*f*x + a^2*d^2*f*x^2 + b^2*(-I + c + d*x)*(2*d*e
 + I*f - c*f + d*f*x)*ArcTan[c + d*x]^2 - 2*b*ArcTan[c + d*x]*(b*f*(c + d*x) + a*(-2*c*d*e + c^2*f - 2*d^2*e*x
 - f*(1 + d^2*x^2)) - 2*b*(d*e - c*f)*Log[1 + E^((2*I)*ArcTan[c + d*x])]) + 4*a*b*d*e*Log[1/Sqrt[1 + (c + d*x)
^2]] - 2*b^2*f*Log[1/Sqrt[1 + (c + d*x)^2]] - 4*a*b*c*f*Log[1/Sqrt[1 + (c + d*x)^2]] - (2*I)*b^2*(d*e - c*f)*P
olyLog[2, -E^((2*I)*ArcTan[c + d*x])])/(2*d^2)

Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 413, normalized size of antiderivative = 1.86

method result size
parts \(a^{2} \left (\frac {1}{2} f \,x^{2}+e x \right )+\frac {b^{2} \left (\frac {\arctan \left (d x +c \right )^{2} \left (d x +c \right )^{2} f}{2 d}-\frac {\arctan \left (d x +c \right )^{2} c f \left (d x +c \right )}{d}+\arctan \left (d x +c \right )^{2} e \left (d x +c \right )-\frac {-\ln \left (1+\left (d x +c \right )^{2}\right ) \arctan \left (d x +c \right ) c f +\ln \left (1+\left (d x +c \right )^{2}\right ) \arctan \left (d x +c \right ) d e -\frac {\arctan \left (d x +c \right )^{2} f}{2}+\arctan \left (d x +c \right ) \left (d x +c \right ) f -\frac {f \ln \left (1+\left (d x +c \right )^{2}\right )}{2}-\frac {\left (-2 c f +2 d e \right ) \left (-\frac {i \left (\ln \left (d x +c -i\right ) \ln \left (1+\left (d x +c \right )^{2}\right )-\frac {\ln \left (d x +c -i\right )^{2}}{2}-\operatorname {dilog}\left (-\frac {i \left (d x +c +i\right )}{2}\right )-\ln \left (d x +c -i\right ) \ln \left (-\frac {i \left (d x +c +i\right )}{2}\right )\right )}{2}+\frac {i \left (\ln \left (d x +c +i\right ) \ln \left (1+\left (d x +c \right )^{2}\right )-\frac {\ln \left (d x +c +i\right )^{2}}{2}-\operatorname {dilog}\left (\frac {i \left (d x +c -i\right )}{2}\right )-\ln \left (d x +c +i\right ) \ln \left (\frac {i \left (d x +c -i\right )}{2}\right )\right )}{2}\right )}{2}}{d}\right )}{d}+\frac {2 a b \left (\frac {\arctan \left (d x +c \right ) \left (d x +c \right )^{2} f}{2 d}-\frac {\arctan \left (d x +c \right ) c f \left (d x +c \right )}{d}+\arctan \left (d x +c \right ) e \left (d x +c \right )-\frac {f \left (d x +c \right )+\frac {\left (-2 c f +2 d e \right ) \ln \left (1+\left (d x +c \right )^{2}\right )}{2}-f \arctan \left (d x +c \right )}{2 d}\right )}{d}\) \(413\)
derivativedivides \(\frac {-\frac {a^{2} \left (f c \left (d x +c \right )-e d \left (d x +c \right )-\frac {f \left (d x +c \right )^{2}}{2}\right )}{d}-\frac {b^{2} \left (\arctan \left (d x +c \right )^{2} f c \left (d x +c \right )-\arctan \left (d x +c \right )^{2} e d \left (d x +c \right )-\frac {\arctan \left (d x +c \right )^{2} f \left (d x +c \right )^{2}}{2}-\ln \left (1+\left (d x +c \right )^{2}\right ) \arctan \left (d x +c \right ) c f +\ln \left (1+\left (d x +c \right )^{2}\right ) \arctan \left (d x +c \right ) d e -\frac {\arctan \left (d x +c \right )^{2} f}{2}+\arctan \left (d x +c \right ) \left (d x +c \right ) f -\frac {f \ln \left (1+\left (d x +c \right )^{2}\right )}{2}+\frac {\left (2 c f -2 d e \right ) \left (-\frac {i \left (\ln \left (d x +c -i\right ) \ln \left (1+\left (d x +c \right )^{2}\right )-\frac {\ln \left (d x +c -i\right )^{2}}{2}-\operatorname {dilog}\left (-\frac {i \left (d x +c +i\right )}{2}\right )-\ln \left (d x +c -i\right ) \ln \left (-\frac {i \left (d x +c +i\right )}{2}\right )\right )}{2}+\frac {i \left (\ln \left (d x +c +i\right ) \ln \left (1+\left (d x +c \right )^{2}\right )-\frac {\ln \left (d x +c +i\right )^{2}}{2}-\operatorname {dilog}\left (\frac {i \left (d x +c -i\right )}{2}\right )-\ln \left (d x +c +i\right ) \ln \left (\frac {i \left (d x +c -i\right )}{2}\right )\right )}{2}\right )}{2}\right )}{d}-\frac {2 a b \left (\arctan \left (d x +c \right ) f c \left (d x +c \right )-\arctan \left (d x +c \right ) e d \left (d x +c \right )-\frac {\arctan \left (d x +c \right ) f \left (d x +c \right )^{2}}{2}+\frac {f \left (d x +c \right )}{2}-\frac {\left (2 c f -2 d e \right ) \ln \left (1+\left (d x +c \right )^{2}\right )}{4}-\frac {f \arctan \left (d x +c \right )}{2}\right )}{d}}{d}\) \(419\)
default \(\frac {-\frac {a^{2} \left (f c \left (d x +c \right )-e d \left (d x +c \right )-\frac {f \left (d x +c \right )^{2}}{2}\right )}{d}-\frac {b^{2} \left (\arctan \left (d x +c \right )^{2} f c \left (d x +c \right )-\arctan \left (d x +c \right )^{2} e d \left (d x +c \right )-\frac {\arctan \left (d x +c \right )^{2} f \left (d x +c \right )^{2}}{2}-\ln \left (1+\left (d x +c \right )^{2}\right ) \arctan \left (d x +c \right ) c f +\ln \left (1+\left (d x +c \right )^{2}\right ) \arctan \left (d x +c \right ) d e -\frac {\arctan \left (d x +c \right )^{2} f}{2}+\arctan \left (d x +c \right ) \left (d x +c \right ) f -\frac {f \ln \left (1+\left (d x +c \right )^{2}\right )}{2}+\frac {\left (2 c f -2 d e \right ) \left (-\frac {i \left (\ln \left (d x +c -i\right ) \ln \left (1+\left (d x +c \right )^{2}\right )-\frac {\ln \left (d x +c -i\right )^{2}}{2}-\operatorname {dilog}\left (-\frac {i \left (d x +c +i\right )}{2}\right )-\ln \left (d x +c -i\right ) \ln \left (-\frac {i \left (d x +c +i\right )}{2}\right )\right )}{2}+\frac {i \left (\ln \left (d x +c +i\right ) \ln \left (1+\left (d x +c \right )^{2}\right )-\frac {\ln \left (d x +c +i\right )^{2}}{2}-\operatorname {dilog}\left (\frac {i \left (d x +c -i\right )}{2}\right )-\ln \left (d x +c +i\right ) \ln \left (\frac {i \left (d x +c -i\right )}{2}\right )\right )}{2}\right )}{2}\right )}{d}-\frac {2 a b \left (\arctan \left (d x +c \right ) f c \left (d x +c \right )-\arctan \left (d x +c \right ) e d \left (d x +c \right )-\frac {\arctan \left (d x +c \right ) f \left (d x +c \right )^{2}}{2}+\frac {f \left (d x +c \right )}{2}-\frac {\left (2 c f -2 d e \right ) \ln \left (1+\left (d x +c \right )^{2}\right )}{4}-\frac {f \arctan \left (d x +c \right )}{2}\right )}{d}}{d}\) \(419\)
risch \(\text {Expression too large to display}\) \(1175\)

[In]

int((f*x+e)*(a+b*arctan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

a^2*(1/2*f*x^2+e*x)+b^2/d*(1/2/d*arctan(d*x+c)^2*(d*x+c)^2*f-1/d*arctan(d*x+c)^2*c*f*(d*x+c)+arctan(d*x+c)^2*e
*(d*x+c)-1/d*(-ln(1+(d*x+c)^2)*arctan(d*x+c)*c*f+ln(1+(d*x+c)^2)*arctan(d*x+c)*d*e-1/2*arctan(d*x+c)^2*f+arcta
n(d*x+c)*(d*x+c)*f-1/2*f*ln(1+(d*x+c)^2)-1/2*(-2*c*f+2*d*e)*(-1/2*I*(ln(d*x+c-I)*ln(1+(d*x+c)^2)-1/2*ln(d*x+c-
I)^2-dilog(-1/2*I*(d*x+c+I))-ln(d*x+c-I)*ln(-1/2*I*(d*x+c+I)))+1/2*I*(ln(d*x+c+I)*ln(1+(d*x+c)^2)-1/2*ln(d*x+c
+I)^2-dilog(1/2*I*(d*x+c-I))-ln(d*x+c+I)*ln(1/2*I*(d*x+c-I))))))+2*a*b/d*(1/2/d*arctan(d*x+c)*(d*x+c)^2*f-1/d*
arctan(d*x+c)*c*f*(d*x+c)+arctan(d*x+c)*e*(d*x+c)-1/2/d*(f*(d*x+c)+1/2*(-2*c*f+2*d*e)*ln(1+(d*x+c)^2)-f*arctan
(d*x+c)))

Fricas [F]

\[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\int { {\left (f x + e\right )} {\left (b \arctan \left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((f*x+e)*(a+b*arctan(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(a^2*f*x + a^2*e + (b^2*f*x + b^2*e)*arctan(d*x + c)^2 + 2*(a*b*f*x + a*b*e)*arctan(d*x + c), x)

Sympy [F]

\[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\int \left (a + b \operatorname {atan}{\left (c + d x \right )}\right )^{2} \left (e + f x\right )\, dx \]

[In]

integrate((f*x+e)*(a+b*atan(d*x+c))**2,x)

[Out]

Integral((a + b*atan(c + d*x))**2*(e + f*x), x)

Maxima [F]

\[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\int { {\left (f x + e\right )} {\left (b \arctan \left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((f*x+e)*(a+b*arctan(d*x+c))^2,x, algorithm="maxima")

[Out]

3/4*b^2*c^2*e*arctan(d*x + c)^2*arctan((d^2*x + c*d)/d)/d - 1/4*(3*arctan(d*x + c)*arctan((d^2*x + c*d)/d)^2/d
 - arctan((d^2*x + c*d)/d)^3/d)*b^2*c^2*e + 12*b^2*d^2*f*integrate(1/16*x^3*arctan(d*x + c)^2/(d^2*x^2 + 2*c*d
*x + c^2 + 1), x) + b^2*d^2*f*integrate(1/16*x^3*log(d^2*x^2 + 2*c*d*x + c^2 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 +
 1), x) + 12*b^2*d^2*e*integrate(1/16*x^2*arctan(d*x + c)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 24*b^2*c*d*f*i
ntegrate(1/16*x^2*arctan(d*x + c)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 2*b^2*d^2*f*integrate(1/16*x^3*log(d^2
*x^2 + 2*c*d*x + c^2 + 1)/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + b^2*d^2*e*integrate(1/16*x^2*log(d^2*x^2 + 2*c*d
*x + c^2 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 2*b^2*c*d*f*integrate(1/16*x^2*log(d^2*x^2 + 2*c*d*x + c^2
 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 24*b^2*c*d*e*integrate(1/16*x*arctan(d*x + c)^2/(d^2*x^2 + 2*c*d*x
 + c^2 + 1), x) + 12*b^2*c^2*f*integrate(1/16*x*arctan(d*x + c)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 4*b^2*d^
2*e*integrate(1/16*x^2*log(d^2*x^2 + 2*c*d*x + c^2 + 1)/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 2*b^2*c*d*f*integr
ate(1/16*x^2*log(d^2*x^2 + 2*c*d*x + c^2 + 1)/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 2*b^2*c*d*e*integrate(1/16*x
*log(d^2*x^2 + 2*c*d*x + c^2 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + b^2*c^2*f*integrate(1/16*x*log(d^2*x^2
 + 2*c*d*x + c^2 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + 4*b^2*c*d*e*integrate(1/16*x*log(d^2*x^2 + 2*c*d*x
 + c^2 + 1)/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + b^2*c^2*e*integrate(1/16*log(d^2*x^2 + 2*c*d*x + c^2 + 1)^2/(d
^2*x^2 + 2*c*d*x + c^2 + 1), x) + 1/2*a^2*f*x^2 + 3/4*b^2*e*arctan(d*x + c)^2*arctan((d^2*x + c*d)/d)/d - 4*b^
2*d*f*integrate(1/16*x^2*arctan(d*x + c)/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) - 8*b^2*d*e*integrate(1/16*x*arctan
(d*x + c)/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) - 1/4*(3*arctan(d*x + c)*arctan((d^2*x + c*d)/d)^2/d - arctan((d^2
*x + c*d)/d)^3/d)*b^2*e + (x^2*arctan(d*x + c) - d*(x/d^2 + (c^2 - 1)*arctan((d^2*x + c*d)/d)/d^3 - c*log(d^2*
x^2 + 2*c*d*x + c^2 + 1)/d^3))*a*b*f + a^2*e*x + 12*b^2*f*integrate(1/16*x*arctan(d*x + c)^2/(d^2*x^2 + 2*c*d*
x + c^2 + 1), x) + b^2*f*integrate(1/16*x*log(d^2*x^2 + 2*c*d*x + c^2 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x)
 + b^2*e*integrate(1/16*log(d^2*x^2 + 2*c*d*x + c^2 + 1)^2/(d^2*x^2 + 2*c*d*x + c^2 + 1), x) + (2*(d*x + c)*ar
ctan(d*x + c) - log((d*x + c)^2 + 1))*a*b*e/d + 1/8*(b^2*f*x^2 + 2*b^2*e*x)*arctan(d*x + c)^2 - 1/32*(b^2*f*x^
2 + 2*b^2*e*x)*log(d^2*x^2 + 2*c*d*x + c^2 + 1)^2

Giac [F]

\[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\int { {\left (f x + e\right )} {\left (b \arctan \left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((f*x+e)*(a+b*arctan(d*x+c))^2,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int (e+f x) (a+b \arctan (c+d x))^2 \, dx=\int \left (e+f\,x\right )\,{\left (a+b\,\mathrm {atan}\left (c+d\,x\right )\right )}^2 \,d x \]

[In]

int((e + f*x)*(a + b*atan(c + d*x))^2,x)

[Out]

int((e + f*x)*(a + b*atan(c + d*x))^2, x)